
 

Catastrophic Fault Recovery with Self-Reconfigurable Chips 
 

Will Hua Zheng, Neville I Marzwell, Savio N Chau 

Division 34 Autonomous Systems 

Jet Propulsion Laboratory 

California Institute of Technology 

4800 Oak Grove Dr, Pasadena, California 91109, United States of America 

Phone: 1-818-354-2974, Fax: 1-818-393-4494, E-mail: Hua.Zheng@jpl.nasa.gov 

 

 
Abstract – Mission critical systems typically employ multi-

string redundancy to cope with possible hardware failure. 

Such systems are only as fault tolerant as there are many 

redundant strings. Once a particular critical component 

exhausts its redundant spares, the multi-string architecture 

cannot tolerate any further hardware failure. This paper 

aims at addressing such catastrophic faults through the use 

of “Self-Reconfigurable Chips” as a last resort effort to 

“repair” a faulty critical component. 

 

Keywords: Reconfiguration, FPGA, fault-recovery, fault-

tolerance, Self-reconfiguration 

 

I. INTRODUCTION 

Future space missions will take us to destinations that are 

so far away that even the fastest spacecrafts would have 

to take decades to reach. Now imagine one such 

spacecraft that has traveled for twenty years and is near 

its final destination. During the twenty-year journey, the 

spacecraft’s avionics have suffered multiple faults, and 

the spacecraft has used up its redundant resources. And it 

is at this critical moment comes the final blow – a 

catastrophic failure that is to disable the spacecraft. But 

almost miraculously the spacecraft recovers despite the 

lack of resources and continues on, thanks to a last-resort 

effort built into the critical components of the spacecraft 

avionics – chips that can reconfigure themselves, using a 

technique we call “Chip Salvaging”. 

The technologies needed to realize the good ending of the 

story above are not far from maturation. This paper will 

focus on the technology that saves the spacecraft at the 

end – Self-Reconfigurable Chips (SRC). 

II. BACKGROUND 

Space is an environment with high levels of ionizing 

radiation, which is particularly harmful to the 

microelectronics commonly found in modern spacecraft 

avionics. Space-certified microelectronics with high 

levels of tolerance of radiation are typically of lower 

performance and cost much more than Commercial Off-

The Shelf (COTS) counterparts. [Thi, 03] Even space-

certified microelectronics is not completely immune from 

ionizing radiation. Hardware faults may occur as a result 

of Single Event Effects (SEEs) induced by ionizing 

radiation. These faults could be memory failure, 

microprocessor computation failure, etc. These faults, 

temporary or permanent, could render the spacecraft 

difficult or impossible to control.  

System level redundancy is usually applied to mitigate the 

faults in the critical components of the avionics. 

Spacecrafts with long missions or going to places with 

high amount of ionizing radiation typically carry one or 

more “copies” of critical components of its avionics. 

These redundant copies can carry on certain predefined 

functions should its primary copy fail during the mission. 

However, such redundancy usually leave large amount of 

redundant resources unutilized, thus waste valuable space 

and weight on the spacecraft. 

The SRC described in the beginning of the paper 

approaches the problem from a different level. The SRC 

carries certain amount of redundancy in itself. Therefore 

it can cope with SEEs better. When fault is detected 

through traditional means of cross-strapping, the faulty 

chip could then repair itself while other chips continue to 

function in the system. When repair is finished, normal 

operation can resume. 

An SRC is a logic device with the ability to reconfigure 

its own logic at run-time. Currently, the best candidate for 

this job is the Field Programmable Gate Array (FPGA) 

chips, which first appeared in the 1980s as an evolution of 

Complex Programmable Logical Devices (CPLDs). These 

chips have come a long way in terms of size and speed 

and are slowly making their way into spacecraft avionics 

(Example: JPL’s Multi-Mission System Architecture 

Platform). 

While modern FPGAs typically fall into different 

categories: SRAM, fuse, antifuse, EPROM, EEPROM, 

and flash, we are most interested in dealing with the 

SRAM type because of its true field reprogrammability. 

SRAM-based FPGAs are organized as matrices of 

Configurable Logic Blocks (CLBs) with reconfigurable 

interconnects (routing resources). CLBs can be 

configured as any kind of logic device including adders 

and multipliers, other blocks may include reconfigurable 

I/O banks.  Because the CLBs are physically identical 

prior to run-time, logic implemented in certain CLBs 

could be relocated to others. 



III. SYSTEM-ON-CHIP AND SRC 

The current trend in electronics design is that entire 

systems are built into FPGAs that incorporate everything 

from microprocessors, memory, high speed I/O, to bus 

controllers. Some designs even incorporate multiple full-

fledged microprocessors in a single FPGA chip. There is 

a special property that is associated with such System-on-

a-Chips (SoCs) implemented in FPGAs – that most 

aspects of the system are realized in reconfigurable logic, 

including internal wiring. This special property enables 

the possibility of reusing the same chip for different 

purposes after deployment. 

Reusing reconfigurable chips in a system of SoCs has 

many advantages and applications. One of the most 

obvious applications, as described in the beginning, is that 

SoCs implemented in FPGAs that have failed partially 

can be reconfigured by either the chip itself or an off-chip 

controller to avoid the damaged regions and continue 

original operations,  or may sacrifice certain non-critical 

functions to continue operations at reduced performance. 

Second, a system of SoCs may have most parts of the 

system implemented with identical reconfigurable SoCs 

and therefore increase survivability through increased 

redundancy (each identical reconfigurable SoC could be 

reused to become redundant backup for others). [ZHE, 

04] Additional applications include using reconfigurable 

FPGAs as a platform to support demand-paged hardware, 

allowing a small chip to perform large functions 

sequentially. 

IV. GAINING ACCESS TO FPGA CONFIGURATION 

Traditional static FPGA designs are stored in an on-board 

storage and configured prior to run-time through a 

proprietary serial interface or a JTAG interface. On most 

board designs, these interfaces are typically routed 

outside of the FPGA to provide the configuration 

interfaces to the user. 

In order for an SRC to reconfigure itself, the 

configuration interface must also be accessible from 

within the FPGA.  

The Internal Configuration Controller is essentially an 

internal implementation of the external configuration 

controller, accessible by internal logic. In figure 2, the 

Internal Configuration Controller gives FPGA 

configuration access to a processor core, which also has 

access to the original FPGA configuration in memory. 

Such a processor would allow users to write software to 

dynamically reconfigure the FPGA during run-time. 

Recent FPGAs have simplified the matter, using 

proprietary configuration solutions to give internal access 

to FPGA configuration, such as the Internal Configuration 

Access Port implemented as a primitive in Xilinx Virtex 

II FPGAs [ECK, 04][BLO, 04]. An FPGA design with an 

ICAP interface is included in Xilinx Application Note 

661 [HUA, 04], which could be used as a reference when 

designing embedded configuration interface. 

V. GENERATING RECONFIGURATION DATA 

USING TRADITIONAL VENDOR TOOLS 

Gaining access to an FPGA’s configuration interface is 

relatively simple compared to the process of generating 

reconfiguration data. Our previous paper, In-System 

Partial Run-Time Reconfiguration for Fault Recovery 

Applications on Spacecrafts [ZHE, 05] discussed how to 

generate such reconfiguration data using vendor tools. We 

conducted research based on the method proposed in the 

above paper and have met some partial success. 

Using a technique [XIL, 04] that isolated reconfigurable 

logic from static logic, two copies of the same 

configuration are generated, each of them having the 

reconfigurable logic located in different regions in the 

FPGA (see fig. 3). 

The figure shows two configuration implementations of 

the same logic in a Xilinx Virtex II Pro FPGA. The Xilinx 

vendor tool comes with a configuration generator that is 

able to read in two configurations and generate a new 

configuration file based on the difference between the 

two. Therefore, the difference configuration could be fed 

to the ICAP interface discussed earlier to effectively 

Generic FPGA

External

 Configuration Controller

Memory

(FPGA Configuration)

TDO

TCK

TMS

TDI

JTAG Configuration Port

TDO

TCK

TMS

TDI

Fig 1. Traditional FPGA Configuration Access 

Generic FPGA

External

 Configuration Controller

Memory

(FPGA Configuration)

TDO

TCK

TMS

TDI

JTAG Configuration Port

TDO

TCK

TMS

TDI

Internal

Configuration 

Controller

TDO

TCK

TMS

TDI

JTAG Internal Port

Processor 

Core

Fig 2. SRC FPGA Configuration Access 



reconfigure the FPGA during run-time. 

The reconfigured logic is a stepping motor controller that 

is hooked up to a motor (via a TTL voltage shifter IC) to 

demonstrate that reconfigured logic can resume previous 

operation. (See fig 4.) 

The research team also wrote software to control the 

reconfiguration process and read the reconfiguration data 

from on-board memory to the ICAP interface. To show 

the effects of the reconfiguration, a graphical interface 

was implemented that shows the contents of the FPGA 

before and after the configuration. (See fig 5.) 

This reconfiguration process confirmed our hypothesis 

that the FPGA can be reconfigured during run-time 

safely. The FPGA continued operation despite the 

configuration change while it was running – we made 

sure that the reconfiguration process did not interfere with 

existing logic. Since the reconfiguration process involved 

re-routing of signal lines, the I/O pads used by the 

reconfigured logic were also re-routed to the newly 

configured logic. 

However, this reconfiguration process has many 

limitations. The target FPGA can only be reconfigured 

once. The reconfiguration data must be generated at 

design time. 

From the above research, we have come to realize that 

vendor tools are not yet well-adapted to generate FPGA 

reconfiguration data effectively. New methods must be 

developed to fulfill this task. 

VI. PROPOSED METHODOLOGY FOR 

GENERATING RECONFIGURATION DATA 

Simply put, moving the configuration generating process 

to the FPGA will allow the FPGA chip to reconfigure 

itself. However, the configuration generating process 

typically take hours even on high-end workstations, it is 

unreasonable to embed it into the SRC as-is. We propose 

selectively embed parts of this process into the SRC. 

The configuration generating process typically involves 

three major steps: (1) Synthesis, which takes human 

developed hardware description (logic) and produces an 

intermediate format called Netlist for further processing; 

(2) Mapping, which maps Netlist logic to primitive parts 

of an FPGA; (3) Place-and-routing, which takes mapped 

Netlists, and implement them as real hardware in FPGAs. 

The synthesis and mapping processes do not directly deal 

with the layout of the FPGA configuration. Therefore 

these two processes can be left to be done during the 

design stage on a workstation. On the other hand, the 

place-and-routing process directly deals with how the 

configuration is laid out. It is therefore our prime 

candidate for embedding into the SRC. This process itself 

may also be done during design-stage to minimize the 

amount of time needed to reconfigure a chip. Only the 

portion of the chip that needs to be reconfigured must be 

re-place-and-routed during run-time, and this process can 

take as little as minutes. 

VII. THE CHALLENGE 

Embedding the place-and-routing process into the SRC 

dictates that the processor in the SRC is able to run place-

and-routing software of some sort. The main challenge is 

that such software is unavailable from FPGA vendors 

themselves. 

Fig 3. Same FPGA Logic Placed at Different Regions 

Logic Equivalents 

Fig 4. Stepping Motor and TTL Driver 

Fig 5. Entire Setup Showing GUI 



Some alternatives exist today. The JHDL tool suite [BEL, 

98] can be used to a certain extent to effectively 

reconfigure FPGAs during run-time. A tool developed 

using the JHDL tools suite to conduct run-time 

reconfiguration of FPGAs is well described in Radiation 

Mitigation and Power Optimization Design Tools for 

Reconfigurable Hardware in Orbit [FRE, 05]. The paper 

describes a software “RHinO” (Reconfigurable Hardware 

in Orbit), which uses Commercial-Off-The-Shelf (COTS) 

tools and JHDL to map hardware design logic into vendor 

specific configuration as well as JHDL-based 

configuration. The latter can be used to reconfigure the 

FPGA at run-time. One major disadvantage of JHDL is 

that it requires a Java run-time environment, which may 

not be available for all embedded processors. 

The ideal method to generate reconfiguration data is still 

software written for embedded processors to run natively. 

However, the place-and-routing process is a complicated 

one and FPGA vendors do not supply the necessary chip 

layout databases needed for this process to the public. 

Some research efforts have gone into developing these 

databases in-house, by reverse-engineering Xilinx 

database files shipped with design software. [STE, 02] 

These efforts currently only cover a small selection of 

FPGAs and require extra efforts for every new FPGA. 

Therefore, such software efforts must involve the FPGA 

vendors themselves. 

VIII. BENEFITS TO SPACECRAFT DESIGN 

Technologies of SRC can be used to increase the fault 

tolerance of a spacecraft. The last-resort scenario 

described in the beginning of this paper utilizes an SRC to 

recover itself by avoiding damaged regions. SRCs can 

also be reconfigured to replace other similar SRCs. 

Consider the following simple spacecraft avionics 

architecture (fig. 6.). There are two controller boards used 

by the main processor board. All three boards implement 

the same generic SRC with different configuration to 

perform different functions. Apparently the architecture 

employs no redundancy. However, the nature of SRC 

gives this architecture some redundancy by design. The 

system can tolerate a fault in either the telemetry or the 

science instrument controller. If either controller fails, the 

other could reconfigure itself to fulfill the role of the 

other.  

Take telemetry controller for example. If the telemetry 

controller fails, the science instrument controller could 

collect science data into memory, reconfigure itself as the 

telemetry controller, upload science data, and reconfigure 

as science instrument controller. The system could repeat 

the process as many times as needed to complete the 

mission.  

In addition, the system can recover a fault in any of the 

boards with only one redundant controller, achieving the 

same fault tolerance of a traditional dual-string redundant 

system with three redundant copies. 

IX. OUR VISION 

The goal of this research had always been the 

development of a modular reconfigurable spacecraft 

avionics design with increased survivability, minimal 

redundancy and mass, and the ability to endure long 

missions. The development of SRC is a part of this vision. 

We envision an avionics system of identical 

reconfigurable subsystems. Each of such a subsystem can 

be configured to perform a unique function or act as a 

redundant backup for other subsystems. 

This vision would require the maturation of the 

methodologies of reconfiguring an FPGA during run-

time. There are two possibilities ahead of us. One is to 

work with FPGA vendors such Xilinx and Altera, or other 

research institutions to develop embedded place-and-

routing software jointly and move at least part of the 

place-and-routing process onboard. A second possibility 

is to develop FPGAs that are built for reconfiguration in-

house. This of course would require much more resources 

than the first proposal, as FPGA design and production 

requires much resource. At the present time, working with 

FPGA vendors to come up with the necessary tools and 

methodologies for run-time reconfiguration of FPGAs is 

still the most viable solution. 

The I/O redirection problem of these reconfigurable 

subsystems is also being looked at Jet Propulsion 

Laboratory. Project MRHE (Modular Reconfigurable 

High Energy) calls for a spacecraft with wireless 

connectivity among its avionics subsystems. Follow-on 

studies on wireless avionics I/O interfaces after the 

cancellation of MRHE are in progress at the time of 

writing.  

 

Telemetry Controller

SRC

Science Instrument Controller

SRC

Main Processor

SRC

Memory

Memory

Memory

Data Bus I/F

Data Bus I/F

Data Bus I/F

Telemetry 

Instrument

Science 

Instrument

Fig 6. Example SRC-based Spacecraft Architecture 



X. CONCLUSION 

Self-Reconfigurable Chips give spacecraft better fault 

tolerance by design, without conflicting with the 

traditional multi-string redundancy approach. In fact, if 

implemented correctly, SRCs can multiply the 

effectiveness of multi-string redundancy. One weakness 

of SRCs is that they do not address the possible difference 

in component interfaces. However, this team has 

consistently associated the success of reconfigurable 

chips with the adoption of wireless technology for 

spacecraft. [ZHE, 04] With that said, SRCs will greatly 

improve the survivability of future spacecraft avionics. 

ACKNOWLEDGEMENTS 

The research described in this paper was carried out at the 

Jet Propulsion Laboratory, California Institute of 

Technology, under a contract with the National 

Aeronautics and Space Administration. Reference herein 

to any specific commercial product, process, or service by 

trade name, trademark, manufacturer, or otherwise, does 

not constitute or imply its endorsement by the United 

States Government or the Jet Propulsion Laboratory, 

California Institute of Technology.  

 

REFERENCES 
 

[Thi, 03] Chad Thibodeau, An Integrated Approach with COTS Creates 

Rad-Tolerant Single Board Computer for Space, 2003 [COTS Journal, 

December 2003] 

[BEL, 98] Peter Bellows, Brad Hutchings, JHDL - An HDL for 

Reconfigurable Systems, 1998 

[STE, 02] Neil Joseph Steiner, A Standalone Wire Database for Routing 
and Tracing in Xilinx Virtex, Virtex-E, and Virtex-II FPGAs 

[BLO, 04] Brandon Blodget, Philip James-Roxby, Eric Keller, Scott 

McMillan, Prasanna Sundararajan, A self-reconfiguring platform, 2004, 
pp. 4. 

[ECK, 04] Vince Eck, Punit Kalra, Rick LeBlanc, Jim McManus, In-

Circuit Partial Reconfiguration of RocketIO Attributes, Xilinx 

Application Note 622, 2004 

[HUA, 04] Dai Huang, Michael Matera, RocketIO Transceiver Bit-Error 

Rate Tester, Xilinx Application Note 621, 2004 

[XIL, 04] Xilinx Corp., Two Flows for Partial Reconfiguration: Module 

Based or Difference Based, Xilinx Application Note 290, pp13-18 

[ZHE, 04] Will Zheng, Savio Chau, Neville Marzwell, Run-Time 

Reconfigurable System over Wireless Network , 2004 [The Space 

Technology and Applications International Forum, 2005] 

[FRE, 05] Matthew French, Paul Graham, Michael Wirthlin, Li Wang, 
Gregory Larchev, Radiation Mitigation and Power Optimization Design 

Tools for Reconfigurable Hardware in Orbit, 2005 

[ZHE, 05] Will Zheng, Neville Marzwell, Savio Chau, In-System Partial 
Run-Time Reconfiguration for Fault Recovery Applications on 

Spacecrafts, 2005 [IEEE International Conference on 

Systems, Man, and Cybernetics, 2005] 


